Wpływ wielkości i czasów obciążania na proces wyciskania limfy z tkanki

Streszczenie: Masaż pneumatyczny jest powszechnie stosowaną metodą terapii obrzęku limfatycznego. W pracy zostały zaprezentowane wyniki symulacji procesów hydromechanicznych, zachodzących w tkance z obrzękiem pod działaniem pojedynczej komory do masażu pneumatycznego. Tkanka z obrzękiem została opisana równaniami modelu poro-śrężystego Biota, a symulacje przeprowadzone z wykorzystaniem Metody Elementów Skończonych, zaimplementowanej w środowisku COMSOL Multiphysics. Uproszczoną geometrię kończyny przyjęto w kształcie cylindra o jednakowej średnicy, z warstwą tkanki o jednakowej grubości, pomijając obecność skóry. Dla wybranych wielkości i czasów działania obciążen oraz przyjazszy zestaw parametrów geometrycznych kończyny i właściwości materiałowych tkanki, zminimalizowano i dokonano analizy rozkładów ciśnienia porowego, prędkości przepływu ciecz, a także przemieszczenia szkieletu. Wyniki symulacji pokazały, że wielkości ciśnienia w komorze masażu oraz czas trwania masażu istotnie wpływają na proces wyciskania limfy.

Słowa kluczowe: masaż pneumatyczny, obrzęk limfatyczny, symulacje

1. **WSTĘP**

Masaż pneumatyczny jest szeroko wykorzystywany w terapii obrzęku limfatycznego kończyny dolnej, obok standardowej metody manualnej. Na rynku medycznym funkcjonuje obecnie wiele urządzeń do masażu różniących się liczbą komor, czasem inflacji i deflacji oraz sposobem regulacji ciśnienia w komorach rękaw. Symulacje procesów hydromechanicznych masowanej tkanki z odpowiednio dobranym modelem matematycznym oraz parametrami tkanki bliskimi z rzeczywistymi jej własnościami mogą przyczynić się do wprowadzenia istotnych zmian w procesie konstrukcji urządzeń do masażu, które to pozwolią na bardziej efektywną terapię obrzęku limfatycznego. Sposób obciążenia tkanki z obrzękiem przyjęto wykorzystując dane z pracy [3], której autorzy mierzyli ciśnienie płynu tkankowego i przepływ pod skórą w tkance z obrzękiem podczas spoczynku lub kompresji z wykorzystaniem rękawa do masażu. Zastosowano wówczas czasy kompresji od 5 – 50 sekund, zakres ciśnienia w komorze od 50-120 mmHg.

Prezentowane w pracy wyniki symulacji dotyczą procesów hydromechanicznych zachodzących w tkance z obrzękiem pod obciążeniem pojedynczej komory do masażu pneumatycznego. Konczyna została zamodelowana w uproszczonym, cylindrycznym kształcie. Na rys. 1 został pokazany fragment kończyny o długości L. Z uwagi na symetrię
procesów zachodzących w tkance, symulacje przeprowadzono dla połowy komory o szerokości \(H \).

W przyjętym do opisu cylindrycznym układzie współrzędnych oś \(z \) jest osią kończyny, natomiast oś \(r \) leży w płaszczyźnie symetrii komory rękawa. Jako \(Re \) oznaczono promień kończyny, \(d \) jest grubością tkanki miękkiej. Przyjęto, że pod działaniem obciążenia zewnątrz tkanka miękka może się deformować, zaś materiał znajdujący się wewnątrz pierścienia tkanki pozostaje niedeformowalny.

![Rys. 1. Schemat symulowanego układu](image)

2. OPIS MODELU TKANKI

Tkankę z obrzędziem traktujemy jako dwufazowy, porowaty ośrodek, w pełni naszycony cieczą. Pod działaniem obciążenia z zewnątrz (tj. ciśnienia w komorze \(p \)) szkielet tego ośrodka może się deformować, a płyn porowy swobodnie przemieszczać w przestrzeni porowej. Dodatkowo zakładając, że szkielet jest jednorodny, izotropowy i ma liniowe własności sprężyste, a przepływ cieczy wywołuje siłę działającą na szkielet proporcjonalną do prędkości przepływu, możemy zastosować model poro-sprężysty Biota [1-3], jako model matematyczny tkanki.

2.1. Równania poro-sprężystości

Równania tego modelu opisujące zmiany ciśnienia porowego \(p \) i wektora przemieszczeń szkieletu \(\mathbf{u} \) przybierają następującą formę:

\[
\frac{\phi}{K} \frac{\partial p}{\partial t} + \nabla \cdot \left(\frac{\mu}{\eta} \mathbf{v} \right) + \alpha \frac{\partial}{\partial t} \nabla \cdot \mathbf{u} = 0
\]

\[
\frac{E}{2(1+v)} \nabla^2 \mathbf{u} + \frac{E}{2(1+v)(1-2v)} \nabla \cdot (\nabla \mathbf{u}) - \alpha \nabla p = 0
\]

gdzie \(K \), \(E \) i \(v \) oznaczają współczynnik ścisłości cięczy, moduł Younga i liczbe Poissona, \(\phi \) i \(k \) są porowatością oraz przepuszczalnością tkanki, parametry \(\mu \) i \(\alpha \) określają lękosc cięczy i współczynnik mechanicznego sprzężenia objętościowego pomiędzy fazami.
2.2. Parametry symulacji

Symulacje przeprowadzono dla tkanki znajdującej się pod połowa komory o szerokości 4.5 cm, przy założeniu symetrii procesów mechanicznych w tkance. Długość rozpatrywanego fragmentu kończyny (tkanki) wynosiła 10 cm, zaś całkowita średnica kończyny to ok. 8.8 cm (obwód 55 cm). Grubość tkanki wynosiła 3 cm. Na podstawie literatury przyjęto szereg parametrów materiałowych tkanki (Tabela 1).

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Opis</th>
<th>Wartość</th>
<th>Jednostka</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>współ sprzężenia objętościowego</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>(\rho)</td>
<td>gęstość</td>
<td>1000</td>
<td>[kg/m³]</td>
</tr>
<tr>
<td>(v)</td>
<td>liczba Poissona</td>
<td>0.33</td>
<td>-</td>
</tr>
<tr>
<td>(E)</td>
<td>moduł sprezystości (Younga)</td>
<td>7.5e9</td>
<td>[Pa]</td>
</tr>
<tr>
<td>(\phi)</td>
<td>porowatość</td>
<td>0.05</td>
<td>-</td>
</tr>
<tr>
<td>(K_f)</td>
<td>ścisłoświy płynu</td>
<td>2.3e9</td>
<td>[Pa]</td>
</tr>
<tr>
<td>(k)</td>
<td>przepuszczalność</td>
<td>1.5e13</td>
<td>[m²]</td>
</tr>
<tr>
<td>(\eta)</td>
<td>lepkość</td>
<td>0.001</td>
<td>[Pa s]</td>
</tr>
<tr>
<td>(P_c)</td>
<td>maksymalne ciśnienia w komorze</td>
<td>6.67, 15.99</td>
<td>[kPa]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(50, 120)</td>
<td>[mmHg]</td>
</tr>
<tr>
<td>(t_{max})</td>
<td>całkowite czasy obciążenia</td>
<td>10, 20, 50, 600</td>
<td>[s]</td>
</tr>
</tbody>
</table>

Tabela 1. Parametry symulacji

W symulacjach przyjęto, iż obciążenie w komorze masażu wzrasta liniowo od zera do wartości maksymalnej przez 5, 15 lub 45 s. Stąd całkowite czasy obciążania przyjmują wartości jak w Tabeli 1. Symulacje dla czasu 600 s zostały przeprowadzone, by zaobserwować moment całkowitej dysympacji ciśnienia. Na rys. 1 widoczne są tzw. punkty kontrolne G i F (\(\alpha \) jest parametrem określającym odległość punktu F od zewnętrznego brzegu komory, natomiast głębokość położenia obu punktów oznaczona została parametrem \(h \)).

2.3. Rezultaty

Na rys. 2 zostały pokazane rozkłady przestrzenne ciśnienia cieczy porowej dla wartości i czasów obciążania jakie podano w Tabeli 1.

Symulacje pokazują, iż zgodnie z założeniami przyjętymi dla modelu poro - sprezystego, początkowo znaczną część obciążenia na brzegu (ciśnienie w komorze masażu) zostaje przejęta przez płyn. Widoczne jest to w postaci znacznyczych wartości ciśnienia cieczy porowej w obszarze pod komorą. Wydłużenie czasu prowadzi do stopniowego spadku ciśnienia w tym obszarze, co jest ścisle związane z ewakuacją limfy z tkanki. Porównanie rezultatów dla tych samych czasów, ale różnych ciśnień w komorze pozwoliło zauważyć, iż większe obciążenie wpływa jedynie na zwiększenie wartości ciśnienia cieczy porowej, nie przyspiesza jednakże jego dysympacji.

Ilościowo te tendencje są wyraźniej widoczne na podstawie obserwacji ewolucji ciśnienia porowego w wybranych punktach kontrolnych G i F, pokazanych na rys. 3, umieszczonych tak, by zobrazować proces zmian ciśnienia w tkance pod komorą (punkt G) i w sąsiedztwie komory (F). W punkcie G po 50 s ciśnienie spadło o 25 %. Osiągnięcie względnie niskiego ciśnienia (brak dalszego wypływu limfy) wiąże się ze znacznym wydłużeniem czasu masażu.
Rys. 2. Rozkłady przestrzenne ciśnienia cieczy porowej dla obciążenia 50 mmHg (a), 120 mmHg (b) oraz czasów 10, 20 i 50 [s].

Rys. 3. Zależność ciśnienia porowego w tkance w punktach F i G od czasu.

Ciśnienie w punkcie F jest około dwukrotnie niższe w stosunku do ciśnienia w tkance pod komorą. Przebieg jest podobny - wzrost przez 5 s do wartości maksymalnej, a następnie powolny spadek. Niskie wartości ciśnienia spowodowane są akumulacją płynu w tkance obok komory, tuż po przyłożeniu obciążenia, zanim ciecz może swobodnie wypływać przez brzeg, gdzie możliwy jest wpływ (BC na rys. 1). Mamy tu do czynienia z efektem sprzężystego zwiększenia objętości porowej, który silnie zależy od parametrów sprzężystych tkanki, E i v.

Na rys. 4 zostały umieszczone wykresy konturowe przemieszczenia promieniowego tkanki (zmian w obwodzie kończyny na danej wysokości - współrzędnej z). Wartości przemieszczeń promieniowych są ścisłe związane z procesem migracji i ewakuacji cieczy porowej. Ujemne przemieszczenia odpowiadają zmniejszeniu obwodu kończyny, dodatnie zaś oznaczają wzrost jej obwodu. Niezależnie od obciążenia przemieszczenie systematycznie rośnie w tkance pod komorą (ściskanie), poza komorą zaś najpierw rośnie (początkowe gromadzenie się płynu), a następnie maleje (wypływ limfy z tkanki).
Dla ciśnienia w komorze 50 mmHg następuje zmniejszenie promienia o ok. 0,8 mm. Wartość ta jest dwukrotnie większa dla ciśnienia 120 mmHg (1,9 mm). Podobnie następuje zwiększenie promienia w sąsiedztwie komory - 0,43 mm (50 mmHg) i 3 mm (120 mmHg).

Rys. 4. Rozkłady przestrzenne przemieszczeń promieniowych tkanki dla obciążenia 50 mmHg (a), 120 mmHg (b) oraz czasów 10, 20 i 50 [s].

Na rys. 5 pokazano ewolucję prędkości przepływu cieczy porowej w czasie, w punktach kontrolnych G i F. Można dostrzec, iż w tkance obciążonej (punkt G, w połowie komory) prędkość jest niewielka i zmienia się istotnie jedynie w początkowym okresie. Poza komorą zaś (punkt F) prędkość przyjmuje znaczące wartości przez pierwszych 50 s, a następnie zaczyna spadać do wartości bliskich zera (dla czasu 600 s).

Rys. 5. Zależność wartości prędkości przepływu płynu porowego w tkance w punktach F i G od czasu.

2.4. Wnioski

Na podstawie wyników symulacji można stwierdzić, iż - wraz ze stopniowym wydłużaniem czasu masażu - wartości każdej z przedstawionych wielkości ulegają istotnym zmianom w początkowej faze (po przyłożeniu obciążenia). Wiąże się to przede wszystkim z procesem przemieszczania limfy w obrębie tkanki pod komorą oraz jej wypływem do
obszarów sąsiadujących. Zwiększenie ciśnienia w komorze masażu przekłada się na wzrost ciśnienia, prędkości przepływu cieczy porowej oraz deformacji tkanki. Nie ma natomiast istotnego wpływu na tempo procesu wyciskania limfy. Inaczej jest w czasem masażu. Warto zauważyć, że 50 s to zdecydowanie za mało, by nastąpił całkowity wpływ cieczy z obszaru objętego masażem. Ciśnienie bowiem spada o połowę dopiero po ok. 250 s. Deformacje są mniejsze w obszarze ściśkanym i większe poza komorą, gdzie tkanka może się swobodnie przemieszczać, a limfa gromadzić w przestrzeni porowej. Przyjęty model zakłada stałe wartości parametrów. Kolejne przybliżenie opisu będzie można uzyskać uwzględniając duże deformacje, niuniformne właściwości i nieliniowy charakter modelu fizycznego tkanki (np. zmiany sztywności z wysokością konczyn i zależność od wielkości deformacji).

LITERATURA

2. Biot M.A.: General theory for three-dimensional consolidation. Journal of Applied Physics, 12, s. 155-164

THE IMPACT OF LOAD AND LOADING TIMES ON SQUEEZING LYMPH FROM EDEMATOUS TISSUE

Abstract: Pneumatic compression of tissue with lymph stasis is related to a commonly used therapeutic modality in limb lymphedema. The paper presents results of computer simulations of the hydromechanical processes in the lymphedematous tissue under stress of a single chamber of sleeve for pneumatic compression. The tissue with edema is described by equations of Biot's poroelasticity model and simulations are performed by finite element method implemented in Comsol Multiphysics environment. The limb is modeled in cylindrical shape, the presence of skin is neglected. Assuming a set of geometrical parameters of limb, material parameters of tissue and selected values and periods of applied load the distributions of pore pressure, liquid velocity and displacement of tissue are analyzed. The results show that the process of squeezing of lymph is strongly dependent on pressure in chamber and time of its action.