Antoni JOHN, Piotr WYSOTA, Katedra Wytrzymałości Matериалów i Metod Komputerowych Mechaniki, Politechnika Śląska, Gliwice

SYSTEM KOMPUTEROWY WSPOMAGAJĄCY DIAGNOZOWANIE OSTEOROROZY NA PODSTAWIE DANYCH Z ILościowej TOMOGRAFII KOMPUTEROWEj

Streszenie. W artykule przedstawiono główne założenia procedury wspomagającej diagnozowanie osteoporoz w kości miednicy człowieka. Punktem wyjątkowym było wykorzystanie danych z ilościowej Tomografii Komputerowej w celu budowy modelu numerycznego kości miednicy. Dysponując modelem przeprowadzono obliczenia wytrzymałościowe i uzyskano informacje o stanie wytęzenia badanej kości. Istotę procesu wspomagania diagnozowania osteoporoz było znalezienie zależności pomiędzy danymi tomograficznymi, stanem wytęzenia kości oraz fazą zaawansowania osteoporoz.

1. WPROWADZENIE

W celu wykrycia osteoporoz przeprowadza się następujące badania profilaktyczne:
- Absorcjometria radiologiczna (RA),
- Jednoenergetyczna absorpcjometria rentgenowska (SXA),
- Dwuenergetyczna absorpcjometria rentgenowska (DEXA),
- Ilościowa Ultrasonografia (QUS),
- Ilościowa Tomografia Komputerowa (QCT).

W pracy wykorzystano Ilościową Tomografię Komputerową. W rozdziale 2 zamieszczono krótki opis tej metody.

Rezultatem tych badań są obrazy radiologiczne analizowanych miejsce (najczęściej przesuwają się nadgarstek, kręgosłup oraz staw biodrowy). Na podstawie otrzymanych zdjęć lekarz wnosiuje o stanie chorego: o występowaniu chorób i stopniu ich zaawansowania.

W wielu przypadkach radiologom trudno jest podać jednoznaczną diagnozę (np. na podstawie obrazów tomograficznych), zatem należy dołożyć starań, aby wspomóc klinistów.
w interpretacji zdjęć, co może przyczynić się do ułatwienia oraz wcześniej psiego wykrywania niektórych zmian chorobowych [6].

2. ILOŚCIOWA TOMOGRAFIA KOMPUTEROWA

Ilościowa Tomografia Komputerowa (QCT) jest jedną z metod diagnostycznych wykorzystujących zjawisko osłabienia wiązki promieniowania w trakcie przechodzenia przez badany obiekt (prawo Lamberta-Beer'a). Metoda ta umożliwia uzyskanie obrazów badanego obiektu w wyniku złożenia projekcji obrazów wykonanych z różnych kierunków (Rys.1). Badanie polega na prześwitleniu promieniami rentgenowskimi badanego układu oraz obiektu odmieszenia – fantomu gęstości, a następnie pomiarze absorpcji przez poszczególne tkanki. Fantom składa się z obszarów reprezentujących wzorcowe gęstości kości. Podczas badan obiekty zostają podzielone na indywidualnevoxele. Każdy voxel scharakteryzowany jest przez 3 współrzędne oraz barwę w skali szarości. Podczas badan część promieniowania zostaje pochłonięta lub rozproszona. Pochłanianie promieniowania zależy od grubości kości oraz zawartości mineralów. Dzięki pomiarze natężenia promieniowania wyjściowego oraz natężenia po przejściu przez badany obiekt można wyznaczyć jego masę. Odnosząc tą wielkość do powierzchni bądź do objętości otrzymuje się gęstość kości wyrażoną w g/cm² lub g/cm³. TK pozwala na otrzymywanie obrazów badanego obiektu w postaci tzw. zdjęć tomograficznych [1, 2].

2.1. Przetwarzanie danych z QCT

Po przeprowadzeniu badań tomograficznych uzyskuje się obrazy radiologiczne, które należy przetworzyć, aby uzyskać informacje o badanych obiektach układu kostnego. Tą procedurę można przedstawić następująco:
1. Przetwarzanie badań tomograficznych – w ich wyniku otrzymuje się zestawy zdjęć CT wykonane z określonym krokiem skanowania.

Rys. 1. Schemat pokazujący działanie metody sumacyjnej

Rys. 2. Zdjedzia z QCT: a) zdjęcie oryginalne, b) zdjęcie po usunięciu zbędnych informacji, c) fantom gęstości
2. Analizowanie uzyskanych obrazów – na podstawie wzorcowych gęstości, zawartych w fantomie, kreślona jest krzywa kalibracyjna, która umożliwia przyporządkowanie poszczególnym odcieniom szarości odpowiadających im gęstości w skali HU.

3. Wyznaczenie gęstości kości w poszczególnych obszarach [5]:

\[\rho = 1.122 HU + 47 \] (1)

4. Określenie modułu Younga kości [5]:

\[E = 1.92\rho - 170 \] (2)

W tej procedurze można określić wielkości (skalę szarości, gęstość radiologiczną i poziomą oraz moduł Younga) z dokładnością do jednego voxel'a, co ma spore znaczenie przy modelowaniu obiektów niejednorodnych, jakimi są kości.

2.2. Jakość obrazów tomograficznych

Dane z QCT uzyskuje się w postaci zdjęć tomograficznych. W trakcie badań należy dołożyć wszelkich starań, aby uzyskane obrazy były najlepiej jakości, gdyż to decyduje o ich przydatności w diagnostyce medycznej. Nie bez znaczenia jest też fakt, że obrazy radiologiczne są wielokrotnie przetwarzane. Najważniejszymi cechami obrazów są: kontrast, ostrość, rozdzielczość, zawartość szumów w stosunku do sygnału użytecznego, artefakty oraz zniekształcenia sygnałów [4, 6].

Szumy i zakończenia występują na każdym etapie generowania obrazu. Ich minimalizacja powinna występować podczas całego procesu rejestracji danych. Najbardziej niekorzystnym przypadkiem jest występowanie szumów na zdjęciu o niskim kontraste. Może to wpłynąć na błędę interpretację obrazów znajdujących się w okolicy progu widoczności. Wpływ szumu można ograniczyć np. przez zastosowanie filtrów lub poprzez lokalne zwiększenie kontrastu. Niestety podczas redukowania szumów może dojść do utraty części informacji, co wpłynie na poziom treści medycznej [6].

Innym problemem jest występowanie niepożądanym cech obrazu, które powstają często w skutek błędnie dobranego procedury rejestracji obrazu. Te nowo powstałe obiekty – artefakty, nie odzwierciedlają własności badanych ciał, a są jedynie wynikiem wpływu niektórych czynników występujących podczas tworzenia lub przetwarzania danych. Artefakty mogą spowodować np. ruchem pacjenta, uszczelnianiu objętości tkanki lub utwierdzaniem wiązki promieniowania. Podczas wykonywania badań TK często spotykanych artefaktami są występujące wady na granicach obszarów o różnej gęstości. Widoczne jest to w postaci lokalnego zmniejszenia ostrości i kontrastu, powstania cieni lub przejaskrawień, co w konsekwencji może doprowadzić do błędnego oszacowania stałych materiałowych [2, 6].

Rys. 3. Pokazanie różnicy między obrazem prawidłowym a) i obrazem z artefaktami b) [3]
3. WSPOMAGANIE DIAGNOZOWANIA OSTEOPOROZY

3.1. System wspomagający diagnozowanie osteoporoz

W oparciu o dane tomograficzne tworzy się model numeryczny kości miednicy (zarówno geometrię jak i parametry materiałowe). W następnym kroku przeprowadza się analizę wytrzymałościową. Na podstawie otrzymanych rezultatów (rozkłady naprężen, odkształceń, przemieszczeń) można ocenić stan wytworzenia badanej kości. Porównując uzyskane wyniki z wielkościami charakteryzującymi stan prawidłowy kości można oszacować zmianę parametrów materialowych, a co za tym idzie osłabienie kości (które jest charakterystyczne dla zmian osteoporozy). Przeprowadzając odpowiednio dużą ilość badań tomograficznych, dokonując ich przekształceń i przeprowadzając obliczenia wytrzymałościowe można utworzyć bazę danych, która będzie wspomagała wykrywanie zmian osteoporozy w kości miednicznej człowieka (Rys. 4). Ogólną zasadę działania programu można przedstawić następująco: po wprowadzeniu do bazy wyników z przeprowadzonych badań profilaktycznych następuje przeszukiwanie bazy w celu znalezienia najbardziej podobnego zdjęcia. W następnym kroku analizowanym danym zostaje przyporządkowany model numeryczny i odpowiadające mu wskaźniki wytrzymałościowe. Jeśli nie będzie można postawić jednoznacznej diagnozy, będzie możliwość powrotu do etapu przeszukiwania i przeglądanie większej ilości danych. Ostatnim etapem jest diagnoza na podstawie oceny aktualnego stanu pacjenta poprzez porównanie danych i analizę wyników z bazy.

![Diagram schematyczny]

Rys. 4. Struktura bazy danych

Rys. 5. Schemat blokowy programu wspomagającego diagnozowanie osteoporoz
3.2. Obliczenia numeryczne

Zarówno geometria jak i parametry materiałowe zadane w modelu numerycznym uzyskano na podstawie badań tomograficznych. W modelu przyjęto materiał liniowo-sprzężyANY. Modelowany obiekt składa się z trzech głównych części:
- kości miednicy człowieka (tkanka zbita i belezkowa),
- endoprotezy stawu biodrowego (warstwa cementu, panewka z tworzywa sztucznego, panewka metalowa),
- głowy kości udowej.

Rys. 6. Model kości miednicy z wyszczególnieniem elementów składowych

Zmiany osteoporoptyczne uwzględniono w postaci przyjęcia własności materiałowych uzyskanych z QCT. W rozpatrywany modelu założono takie same parametry materiałowe w obrębie jednej tkanki (korowej i belezkowej), natomiast trwają prace nad modelami, w którym będzie możliwość przyporządkowania stałych materialowych do poszczególnych elementów skończonych.

Na Rys. 7. i 8. przedstawiono przykładowe rezultaty analiz numerycznych.

Rys. 7. Rozkłady naprężeń zastępczych wg hipotezy Hubera [MPa]

Rys. 8. Rozkłady przemieszczeń [m]

4. PODSUMOWANIE

Przedstawiona procedura wspomaga interpretację zdjęć radiologicznych, co może przyczynić się do wcześniejszego wykrycia zmian osteoporoptycznych, a w konsekwencji zwiększyć szanse na wyleczenie.

System pomaga przyporządkować zdjęcia tomograficzne do określonych stanów osteoporozy, co ma szczególne znaczenie w przypadkach, gdy na podstawie standardowych oględzin trudno jest postawić jednoznaczną diagnozę.
Zastosowanie QCT umożliwia uchwycenie stanów niebezpiecznych dla układu kostnego (gdy normalne, fizjologiczne obciążenie może spowodować złamanie kości).

Informacje uzyskane po przetworzeniu danych z TK mogą być pomocne podczas badania stopnia zaawansowania osteoporozy w konkretnych przypadkach klinicznych.

Budowanie modelu numerycznego na podstawie danych radiologicznych zwiększa wiarygodność rezultatów uzyskanych z analiz numerycznych.

Przedstawione podejście umożliwia wychwycenie zmian w strukturze kości w sposób bardziej precyzyjny niż standardowe badanie.

Praca jest częścią projektu N51804732/3670 finansowanego przez Ministerstwo Nauki i Szkolnictwa Wyższego

LITERATURA

COMPUTER SYSTEM TO AID OF DIAGNOSIS OF OSTEOPOROSIS ON THE BASE DATA FROM QUANTITATIVE COMPUTED TOMOGRAPHY

Summary. In the paper the main foundations and the most important information about procedure to aid of diagnosis of osteoporosis in human pelvic bone was presented. Information about bones were draw from Quantitative Computed Tomography – by conversion the QCT data the numerical model of analyzed structure is created. The next step of work is performing of the strength calculations. The obtained results (distributions of the stresses, strains and displacements) enables to notice the changes in physiological structure of pelvic bone and detecting dangerous states. The essence of aid of diagnosis the osteoporosis is the finding relationship between QCT images, the effort of pelvic bone and phases of osteoporosis.