Zbigniew PASZENDA, Marcin BASIAGA Instytut Materialów Inżynierskich i Biomedycznych, Zakład Inżynierii Materialów Biomedycznych, Politechnika Śląska, Gliwice

ANALIZA BIOMECHANICZNA UKŁADU WIERTŁO CHIRURGICZNE – KOŚĆ UDOWA

Streszczenie. Zasadniczym celem prezentowanej pracy była analiza biomechaniczna układu wiertło chirurgiczne – kość udowa w warunkach symulujących proces wierczenia w kości. Opracowano model geometryczny wiertła chirurgicznego o zróżnicowanej geometrii ostrza (\(2\alpha_1 = 90^\circ\) i \(2\alpha_2 = 120^\circ\)) oraz krążka symulującego kość udową. Obliczenia przeprowadzono dla wiertła wykonanego ze stali X39Cr13. Efektem zrealizowanej analizy było wyznaczenie stanu odkształcen i naprężeń zredukowanych w części roboczej wiertła w funkcji obciążenia silą \(F = 20-100\) N i prędkością obrotową \(n = 2000\) obr/min.

1. WSTĘP

Wiertła stosowane w chirurgii kostnej są grupą narzędzi chirurgicznych, których zastosowanie zostało wymuszone przez rozwój technik osteosyntezy. Różnorodność stosowanych technik operacyjnych oraz tendencje do uproszczenia samego zabiegu, zaowocowały pojawieniem się wielu odmian wiertel (z ostrzem wprowadzającym, kaniulowane). W odróżnieniu od stosowanych w obróbce skrawaniem wiertła chirurgiczne posiadają inną geometrię ostrza. Wynika to z odmiennych własności mechanicznych materiału poddawanego obróbce (tkanka kostna) [1–3].

Ogromne zapotrzebowanie na chirurgiczne instrumentarium zabiegowe sprawia, że podejmowane są próby poprawy jego trwałości. W literaturze niewiele miejsca poświęca się natomiast zagadnieniom biomechaniki tej grupy narzędzi. Dotyczy to przede wszystkim analizy stanu odkształcen i naprężeń z uwzględnieniem ich przeznaczenia funkcjonalnego. Tego rodzaju analiza stanowi podstawę do optymalizacji cech geometrycznych oraz doboru własności mechanicznych materiału metalowego. W większości prac prezentowanych są głównie zagadnienia dotyczące rozkładu temperatury [4–8]. Z tego względu w niniejszej pracy przeprowadzono analizę z wykorzystaniem metody elementów skośnych wytypowanej postaci wiertła chirurgicznego w warunkach symulujących proces wierczenia w kości.
2. METODYKA BADAN

2.1. Model geometryczny

W pracy analizie poddano wiertło stosowane w zabiegach osteosyntezy o zróżnicowanej geometrii ostrza. Zmienną wielkością geometryczną był kąt wierzchołkowy $2\kappa_1 = 90^\circ$ i $2\kappa_2 = 120^\circ$. Srednica i długość wiertła była stała i wynosiła odpowiednio $d = 6$ mm i $l = 70$ mm – rys. 1.

![Rys. 1. Model geometryczny analizowanej postaci wiertła chirurgicznego](image1)

W celu przeprowadzenia analizy numerycznej w warunkach symulujących proces wiercenia opracowano uproszczony model geometryczny kości udowej. Model kości udowej w obszarze tkanki korowej zasymluwano w postaci krążka o średnicy $d_1 = 20$ mm i wysokości $h = 10$ mm. Wysokość krążka $h$ odpowiada grubości tkanki korowej kości udowej. W opracowanym modelu krążka wstępnie zasymluwano również otwór o średnicy odpowiadającej średnicy wiertła i odzwierciedlający jego geometrię ostrza – rys. 2. Do opracowania modeli geometrycznych wykorzystano oprogramowanie Inventor Professional 2008.

![Rys. 2. Model geometryczny krążka symulującego kość udową](image2)
2.2. Model obliczeniowy


![Rys. 3. Model dyskretny: a) wiertło chirurgiczne, b) krążka symulującego kość udową, c) układ wiertło chirurgiczne – kość udowa](image)

Dla przeprowadzenia obliczeń niezbędne było określenie i nadanie warunków początkowych oraz brzegowych, które z odpowiednią dokładnością odwzorowywały zjawiska zachodzące w układzie rzeczywistym. Przyjęto następujące założenia – rys. 4.

- wiertło obciążono siłą osiową z zakresu $F = 20\div100$ N i prędkością obrotową $n = 2000$ obr/min [4-6],
- umiejscowienie podpór uniemożliwiało ruch krążka w kierunku osi X, Y i Z,
- zasymulowano kontakt wiertła z krążkiem symulującym kość wzdłuż krawędzi skrawających i ścinu

![Rys. 4. Model obliczeniowy z naniesionymi warunkami brzegowymi F – siła, n – prędkość obrotowa, 1 – podpora stała](image)
Zakres przeprowadzonej w pracy analizy obejmował wyznaczenie stanu odkształceń i naprężeń w obszarze części roboczej wiertła chirurgicznego w zależności od przyjętych wartości kąta wierchołkowego (2κ₁ = 90° i 2κ₂ = 120°) oraz własności mechanicznych materiału wiertła – stal martentyzyczna (X39Cr13). Dla potrzeb analizy przyjęto następujące dane wartości materiałowe:
- E = 221 000 MPa, ν = 0,35 – stal martentyzyczna (X39Cr13),
- E = 18600 MPa, ν = 0,33 – tkanka korowa kości udowej

3. WYNIKI BADAŃ

Wyniki analizy stanu odkształceń i naprężeń zredukowanych wiertła chirurgicznego dla obydwu analizowanych w pracy wartości kąta wierchołkowego (2κ₁ = 90° i 2κ₂ = 120°) wykonanego ze stali martentyzycznej X39Cr13 zestawiono w tabeli 1.

<table>
<thead>
<tr>
<th>Kąt wierchołkowy 2κ, °</th>
<th>Siła F, N</th>
<th>Odkształcenie zredukowane εₘₐₓ, %</th>
<th>Naprężenie zredukowane σₘₐₓ MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°</td>
<td>20</td>
<td>0,033</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>0,10</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0,16</td>
<td>269</td>
</tr>
<tr>
<td>120°</td>
<td>20</td>
<td>0,043</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>0,13</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0,21</td>
<td>291</td>
</tr>
</tbody>
</table>

Analiza uzyskanych wyników wskazuje na zróżnicowany rozkład wartości odkształceń zredukowanych występujących w części roboczej wiertła. Na podstawie przeprowadzonej analizy stwierdzono, że przy minimalnym obciążeniu siłą F = 20 N maksymalne wartości odkształceń zredukowanych wynosiły odpowiednio εₘₐₓ = 0,033% (dla kąta 2κ₁ = 90°) i εₘₐₓ = 0,043% (dla kąta 2κ₂ = 120°). Natomiast przy maksymalnym obciążeniu siłą F = 100 N maksymalne wartości odkształceń zredukowanych wynosiły odpowiednio εₘₐₓ = 0,16% i εₘₐₓ = 0,21%. Maksymalne wartości odkształceń zredukowanych dla kąta wierchołkowego 2κ₁ = 90° występują w obszarze krawędzi skrawającej wiertła w pobliżu ścian. Z kolei dla kąta 2κ₂ = 120° rozmieszczone są równomiernie wzdłuż krawędzi skrawającej. Niezależnie od wartości kąta wierchołkowego wartości odkształceń zredukowanych rozkładają się symetrycznie na obydwu krawędziach skrawających. Przykładowe mapy maksymalnych odkształceń zredukowanych dla wiertła o kącie wierchołkowym 2κ = 90° i 120° przedstawiono na rys. 5.

W dalszej części analizy wyznaczono stan naprężeń w obszarze ostrza wiertła. Analiza uzyskanych wyników wskazuje na zróżnicowany rozkład wartości naprężeń występujących w części roboczej wiertła. Stwierdzono, że przy minimalnym obciążeniu siłą F = 20N maksymalne wartości naprężeń zredukowanych wynosiły odpowiednio σₘₐₓ = 54 MPa (dla kąta 2κ₁ = 90°) i σₘₐₓ = 58 MPa (dla kąta 2κ₂ = 120°). Natomiast przy obciążeniu wiertła maksymalną siłą F = 100 N wartości maksymalnych naprężeń zredukowanych wynosiły odpowiednio σₘₐₓ = 269 MPa i σₘₐₓ = 291 MPa. Maksymalne wartości naprężeń zredukowanych dla kąta 2κ₁ = 90° występują w obszarze krawędzi skrawającej wiertła głównie w pobliżu krawędzi poprzecznej zwanej ścianą. Z kolei dla kąta 2κ₂ = 120° rozkład
naprężeń zredukowanych jest równomierny wzdłuż obydwu krawędzi skrawających. Niezależnie od wartości kąta wierchołkowego obserwuje się symetryczny rozkład wartości naprężeń zredukowanych wzdłuż obydwu krawędzi skrawających. Przykładowe mapy rozkładu naprężeń zredukowanych dla wiertła o kącie wierchołkowym $2\kappa = 90^\circ$ i $120^\circ$ przedstawiono na rys. 6.

![Rys. 5. Rozkład odkształceń zredukowanych przy obciążeniu silą $F = 100$ N a) dla wiertła o kącie $2\kappa_1 = 90^\circ$, b) dla wiertła o kącie $2\kappa_2 = 120^\circ$](image)

![Rys. 6. Rozkład naprężeń zredukowanych przy obciążeniu silą $F = 100$ N a) dla wiertła o kącie $2\kappa_1 = 90^\circ$, b) dla wiertła o kącie $2\kappa_2 = 120^\circ$](image)

4. PODSUMOWANIE

W pracy przeprowadzono biomechaniczną analizę wiertła chirurgicznego stosowanego w zabiegach osteosyntezy dla skrajnych wartości kąta wierchołkowego – $2\kappa_1 = 90^\circ$ i $2\kappa_2 = 120^\circ$. W celu odwzorowania zjawisk zachodzących w układzie rzeczywistym opracowano uproszczony model obliczeniowy wiertło chirurgiczne – kość udowa oraz przyjęto odpowiednie warunki brzegowe – rys. 3 i 4. Uproszczenia w modelu geometrycznym analizowanego układu dotyczyły głównie geometrii kości udowej. Zasymulowano ją
w postaci walca o wysokości $h = 10 \text{ mm}$ odpowiadającej grubości tkanki korowej – rys. 2.
W pracy obliczenia przeprowadzono dla wiertła wykonanego ze stali martensytycznej
(X39Cr13). Analiza uzyskanych wyników wskazuje na zróżnicowany rozkład wartości
odkształceń
i naprężeń zredukowanych występujących w części roboczej wiertła w zależności od
geometrii jego ostrza. Największe wartości odkształceń i naprężeń zredukowanych
występowały w wiertle o kącie wierzchołkowym $2\gamma_2 = 120^\circ$ – tabela 1, rys. 5, 6. Uzyskane
w pracy wyniki analizy numerycznej mogą stanowić podstawę do optymalizacji geometrii
ostrza narzędzi chirurgicznych oraz doboru własności mechanicznych materiału do ich
wytworzenia.

Praca naukowa finansowana ze środków na naukę w latach 2009-2011 jako projekt
badawczy

LITERATURA

[1] Paszenda Z., Tyrlık-Held.: Instrumentarium chirurgiczne. Wydawnictwo Politechniki
Słaściej, Gliwice, 2003
Dolna M., Lacki P.: Wear investigations of tools used in bone surgery. Journal of
259-262
[3] Marciniak J., Paszenda Z., Szewczenko J., Kaczmarek M., Basiaga M., Gierzyńska-
Dolna, Lacki P.: The quality of tools used in bone surgery, Problemy Eksploatacji 4,
2006, s. 179-186
complication in orthopaedic surgery. International Journal Of The Care Of The Injured,
vol. 23, 1992, pp. 5-16
necrosis. Advances in Production Engineering & Management 2, 2007, pp. 103-112
temperatures and their duration: an in vitro study. Medical Engineering & Physics 22,
2000, pp. 685-691
[8] Allotta B., Belmonte F., Bosio L., Dario P.: Study on a mechatronic tool for drilling in
the osteosynthesis of long bones: tool / bone interaction, modeling and experiments.
Mechatronics, vol. 6, no. 4, 1996, pp. 447-459

BIOMECHANICAL ANALYSIS OF SURGICAL
DRILL - BONE SYSTEM

Summary. The aim of the work was determination of biomechanical analysis of
a surgical drill – bone system in simulated conditions of drilling in a bone.
Geometrical models of the surgical drill of diverse geometry of the edge ($2\gamma_1 =
90^\circ$ and $2\gamma_2 = 120^\circ$) and the disc simulating femur were worked out. Calculations
were carried out for the drill made of martensitic steel (X39Cr13). The effect of
numerical analysis was determination of strains and stresses in working part of
the drill as a functional of the applied loading $F = 20-100 \text{ N}$ and rotational speed
$n = 2000 \text{ rpm}$.